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Chapter 3
ATTRIBUTE GRAMMARS

In Chapter 1 we discussed the hierarchy of formal grammars proposed by
Noam Chomsky. We mentioned that context-sensitive conditions, such
as ensuring the same value for n in a string anbncn, cannot be tested

using a context-free grammar. Although we showed a context-sensitive gram-
mar for this particular problem, these grammars in general are impractical
for specifying the context conditions for a programming language. In this
chapter and the next we investigate two different techniques for augmenting
a context-free grammar in order to verify context-sensitive conditions.

Attribute grammars can perform several useful functions in specifying the
syntax and semantics of a programming language. An attribute grammar
can be used to specify the context-sensitive aspects of the syntax of a lan-
guage, such as checking that an item has been declared and that the use of
the item is consistent with its declaration. As we will see in Chapter 7, at-
tribute grammars can also be used in specifying an operational semantics of
a programming language by defining a translation into lower-level code based
on a specific machine architecture.

Attribute grammars were first developed by Donald Knuth in 1968 as a means
of formalizing the semantics of a context-free language. Since their primary
application has been in compiler writing, they are a tool mostly used by pro-
gramming language implementers. In the first section, we use examples to
introduce attribute grammars. We then provide a formal definition for an
attribute grammar followed by additional examples. Next we develop an at-
tribute grammar for Wren that is sensitive to the context conditions dis-
cussed in Chapter 1 (see Figure 1.11). Finally, as a laboratory activity, we
develop a context-sensitive parser for Wren.

3.1  CONCEPTS AND EXAMPLES

An attribute grammar may be informally defined as a context-free grammar
that has been extended to provide context sensitivity using a set of attributes,
assignment of attribute values, evaluation rules, and conditions. A finite,
possibly empty set of attributes is associated with each distinct symbol in
the grammar. Each attribute has an associated domain of values, such as
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integers, character and string values, or more complex structures. Viewing
the input sentence (or program) as a parse tree, attribute grammars can
pass values from a node to its parent, using a synthesized attribute, or from
the current node to a child, using an inherited attribute. In addition to pass-
ing attribute values up or down the parse tree, the attribute values may be
assigned, modified, and checked at any node in the derivation tree. The fol-
lowing examples should clarify some of these points.

Examples of Attribute Grammars

We will attempt to write a grammar to recognize sentences of the form anbncn.
The sentences aaabbbccc  and abc belong to this grammar but the sentences
aaabbbbcc  and aabbbcc do not. Consider this first attempt to describe the
language using a context-free grammar:

<letter sequence> ::= <a sequence> <b sequence> <c sequence>

<asequence> ::= a | <a sequence> a

<bsequence> ::= b | <bsequence> b

<csequence> ::= c | <csequence> c

As seen in Figure 3.1, this grammar can generate the string aaabbbccc . It
can also generate the string aaabbbbcc , as seen in Figure 3.2.

<letter sequence>  

<a sequence>   

<a sequence>

<a sequence>

<b sequence>

<b sequence>

a

<c sequence>

<c sequence>a

a

b  

b

b

c

c

c

 <b sequence> <c sequence>

Figure 3.1: Parse Tree for the String aaabbbccc

As has already been noted in Chapter 1, it is impossible to write a context-
free grammar to generate only those sentences of the form anbncn. However,
it is possible to write a context-sensitive grammar for sentences of this form.
Attribute grammars provide another approach for defining context-sensitiv-
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ity. If we augment our grammar with an attribute describing the length of
aletter sequence, we can use these values to ensur e that the sequences of
a’s, b’s, and c’s all have the same length.

<letter sequence>  

<a sequence>

<a sequence>

<a sequence>

<b sequence>

<b sequence>

<c sequence>

<b sequence>

a

a

a

b  

b

b

b

c

c

<b sequence> <c sequence>

Figure 3.2: Parse Tree for the String aaabbbbcc

The first solution involves a synthesized attribute Size that is associated with
the nonterminals <asequence>, <bsequence>, and <csequence>. W e add
the condition that, at the root of the tree, the Size attribute for each of the
letter sequences has the same value. If a character sequence consists of a
single character, Size is set to 1; if it consists of a character sequence fol-
lowed by a single character, Size for the parent character sequence is the
Size of the child character sequence plus one. We have added the necessary
attribute assignments and conditions to the grammar shown below. Notice
that we differentiate a parent sequence from a child sequence by adding
subscripts to the nonterminal symbols.

<lettersequence> ::= <asequence> <bsequence> <csequence>
condition :

Size (<asequence>) = Size (<bsequence>) = Size (<csequence>)

<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2  a
Size (<asequence>) ← Size (<asequence> 2) + 1
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<bsequence> ::= b
Size (<bsequence>) ← 1

| <bsequence> 2  b
Size (<bsequence>) ← Size (<bsequence> 2) + 1

<csequence> ::= c
Size (<csequence>) ← 1

| <csequence> 2  c
Size (<csequence>) ←Size (<csequence> 2) + 1

This attribute grammar successfully parses the sequence aaabbbccc  since
the sequence obeys the BNF and satisfies all conditions in the attribute gram-
mar. The complete, decorated parse tree is shown in Figure 3.3.

c

c

                                          condition: true 
  Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<letter sequence>  

<a sequence>

<a sequence> <b sequence> <c sequence>

<b sequence> <c sequence>

Size :  3

Size :  2

Size :  1

a

a

a

b

b

b

c  

Size :  1Size :  1

Size :  2Size :  2

Size :  3Size :  3
<b sequence> <c sequence>

<a sequence>

Figure 3.3: Parse Tree for aaabbbccc  Using Synthesized Attributes

On the other hand, this attribute grammar cannot parse the sequence
aaabbbbcc . Although this sequence satisfies the BNF part of the grammar, it
does not satisfy the condition required of the attribute values, as shown in
Figure 3.4.

When using only synthesized attributes, all of the relevant information is
passed up to the root of the parse tree where the checking takes place. How-
ever, it is often more convenient to pass information up from one part of a
tree, transfer it at some specified node, and then have it inherited down into
other parts of the tree.
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<letter sequence>  
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                                        condition: false 
  Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<a sequence> <b sequence> <c sequence>

Figure 3.4: Parse Tree for aaabbbbcc  Using Synthesized Attributes

Reconsider the problem of recognizing sequences of the form anbncn. In this
solution, we use the attribute Size as a synthesized attribute for the sequence
of a’s and InhSize as inherited attributes for the sequences of b’s and c’s. As
we have already seen, we can synthesize the size of the sequence of a’s to the
root of the parse tree. In this solution we set the InhSize attribute for the b
sequence and the c sequence to this value and inherit it down the tree,
decrementing the value by one every time we see another character in the
sequence. When we reach the node where the sequence has a child consist-
ing of a single character, we check if the inherited InhSize attribute equals
one. If so, the size of the sequence must be the same as the size of the se-
quences of a’s; otherwise, the two sizes do not match and the parse is unsuc-
cessful. These ideas are expressed in the following attribute grammar:

<lettersequence> ::= <asequence> <bsequence> <csequence>
InhSize (<bsequence>) ← Size (<asequence>)
InhSize (<csequence>) ← Size (<asequence>)

3.1  CONCEPTS AND EXAMPLES
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<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2  a
Size (<asequence>) ← Size (<asequence> 2) + 1

<bsequence> ::= b
condition:  InhSize (<bsequence>) = 1

| <bsequence> 2  b
InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

<csequence> ::= c
condition:  InhSize (<csequence>) = 1

| <csequence> 2 c
InhSize (<csequence> 2) ← InhSize (<csequence>) – 1

For the nonterminal <asequence>,  Size is a synthesized attribute, as we can
see from the attribute assignment

Size (<asequence>) ← Size (<asequence> 2) + 1.

Here the value of the child is incremented by one and passed to the parent.
For the nonterminals <bsequence> and <csequence>,  InhSize is an inher-
ited attribute that is passed from parent to child. The assignment

InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

shows that the value is decremented by one each time it is passed from the
parent sequence to the child sequence. When the sequence is a single char-
acter, we check that the inherited size attribute value is one. Figure 3.5 shows
a decorated attribute parse tree for the sequence aaabbbccc , which satisfies
the attribute grammar since it satisfies the BNF and all attribute conditions
are true. Size is synthesized up the left branch, passed over to the center and
right branches at the root, inherited down the center branch, and inherited
down the right branch as InhSize.

As before, we demonstrate that the attribute grammar cannot parse the se-
quence aaabbbbcc . Although this sequence satisfies the BNF part of the gram-
mar, it does not satisfy all conditions associated with attribute values, as
shown in Figure 3.6. In this case, the parse fails on two conditions. It only
takes one false condition anywhere in the decorated parse tree to make the
parse fail.
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Figure 3.5: Parse Tree for aaabbbccc  Using Inherited Attributes
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Figure 3.6: Parse Tree for aaabbbbcc  Using Inherited Attributes

3.1  CONCEPTS AND EXAMPLES
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In this grammar the sequence of a’s determines the “desired” length against
which the other sequences are checked. Consider the sequence aabbbccc . It
might be argued that the sequence of a’s is “at fault” and not the other two
sequences. However, in a programming language with declarations, we use
the declarations to determine the “desired” types against which the remain-
der of the program is checked. The declaration information is synthesized up
to the root of the tree and passed into the entire program for checking. Using
this approach makes it easier to localize errors that cause the parse to fail.
Also, if both synthesized and inherited attributes are used, an attribute value
may be threaded throughout a tree. We will see this mechanism in Chapter 7
when an attribute grammar is used to help determine label names in the
generation of code. Before developing the complete attribute grammar for
Wren, we provide some formal definitions associated with attribute gram-
mars and examine one more example where attributes are used to determine
the semantics of binary numerals.

Formal Definitions

Although the above examples were introduced in an informal way, attribute
grammars furnish a formal mechanism for specifying a context-sensitive gram-
mar, as indicated by the following definitions.

Definition : An attribute grammar  is a context-free grammar augmented
with attributes, semantic rules, and conditions.

Let G = <N,Σ,P,S> be a context-free grammar (see Chapter 1).
Write a production p ∈P in the form:

p:  X0  ::=  X1 X2 … Xnp

where np ≥ 1, X0 ∈ N and Xk ∈ N ∪ Σ for 1 ≤ k ≤ np.

A derivation tree for a sentence in a context-free language, as defined in
Chapter 1, has the property that each of its leaf nodes is labeled with a
symbol from Σ and each interior node t corresponds to a production p ∈ P
such that t is labeled with X0 and t has np children labeled with X1, X2, …,
Xnp in left-to-right order.

For each syntactic category X ∈ N in the grammar, there are two finite dis-
joint sets I(X) and S(X) of inherited and synthesized attributes . For X = S,
the start symbol, I(X) = ∅.

Let A(X) = I(X) ∪ S(X) be the set of attributes of X. Each attribute Atb ∈ A(X)
takes a value from some semantic domain (such as the integers, strings of
characters, or structures of some type) associated with that attribute. These
values are defined by semantic functions or semantic rules  associated
with the productions in P.

Consider again a production p ∈ P of the form X0  ::=  X1 X2 … Xnp  Each
synthesized attribute Atb ∈ S(X0) has its value defined in terms of the at-
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tributes in A(X1) ∪ A(X2) ∪ … ∪ A(Xnp
) ∪ I(X0). Each inherited attribute

Atb ∈ I(Xk) for 1 ≤ k ≤ np has its value defined in terms of the attributes in
A(X0) ∪ S(X1) ∪ S(X2) ∪ … ∪ S(Xnp

).

Each production may also have a set of conditions on the values of the at-
tributes in A(X0) ∪ A(X1) ∪ A(X2) ∪ … ∪ A(Xnp

) that further constrain an
application of the production. The derivation (or parse) of a sentence in the
attribute grammar is satisfied if and only if the context-free grammar is sat-
isfied and all conditions are true. The semantics of a nonterminal can be
considered to be a distinguished attribute evaluated at the root node of the
derivation tree of that nonterminal. ❚

Semantics via Attribute Grammars

We illustrate the use of attribute grammars to specify meaning by developing
the semantics of binary numerals. A binary numeral is a sequence of binary
digits followed by a binary point (a period) and another sequence of binary
digits—for example, 100.001 and 0.001101. For simplicity, we require at
least one binary digit, which may be 0, for each sequence of binary digits. It
is possible to relax this assumption—for example 101 or .11—but this flexibility
adds to the complexity of the grammar without altering the semantics of
binary numerals. Therefore we leave this modification as an exercise. We
define the semantics of a binary numeral to be the real number value Val
associated with the numeral, expressed in base-ten notation. For example,
the semantics of the numeral 100.001 is 4.125.

The first version of an attribute grammar defining the meaning of binary
numerals involves only synthesized attributes.

Synthesized Inherited
Nonterminals Attributes Attributes
<binary numeral> Val  —
<binary digits> Val, Len  —
<bit> Val  —

<binary numeral> ::= <binary digits>1 . <binary digits>2

Val (<binary numeral>) ← Val (<binary digits>1) +
Val (<binary digits>2) / 2Len (<binary digits>2)

<binary digits> ::=

   <binary digits>2 <bit>
Val (<binary digits>) ← 2 • Val (<binary digits>2) + Val (<bit>)
Len (<binary digits>) ← Len (<binary digits>2) + 1

| <bit>
Val (<binary digits>) ← Val (<bit>)
Len (<binary digits>) ← 1

3.1  CONCEPTS AND EXAMPLES
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<bit> ::=

   0
Val (<bit>) ← 0

| 1
Val (<bit>) ← 1

The derivation tree in Figure 3.7 illustrates the use of attributes that give the
semantics for the binary numeral 1101.01 to be the real number 13.25.

<binary numeral>
Val:  13 + 1/22   = 13.25

<binary digits>
Val :  13
Len :  4

<binary digits>
Val :  1  
Len :  2  

<binary digits>
Val :  6  
Len :  3 

<binary digits>
Val :  3  
Len :  2  

<binary digits>
Val :  1  
Len :  1  

<bit>
Val :  1 

<binary digits>
Val :  0  
Len :  1  

<bit>
Val :  1 

<bit>
Val :  0 

<bit>
Val :  1 

<bit>
Val :  1 

<bit>
Val :  0 

1

1

1 1

0 0

Figure 3.7: Binary Numeral Semantics Using Synthesized Attributes
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The previous specification for the semantics of binary numerals was not based
on positional information. As a result, the attribute values below the root do
not represent the semantic meaning of the digits at the leaves. We now present
an approach based on positional semantics, illustrated first in base 10,

123.45 = 1•102 + 2•101 + 3•100 + 4•10-1 + 5•10-2

and then in base 2,

110.101 = 1•22 + 1•21 + 0•20 + 1•2-1 + 0•2-2 + 1•2-3

= 6.625  (base 10).

We develop a positional semantics in which an inherited attribute called Pos
is introduced. It is convenient to separate the sequence of binary digits to the
left of the binary point, identified by the nonterminal <binary digits>, from
the fractional binary digits to the right of the binary point, identified by the
nonterminal <fraction digits>.

Synthesized Inherited
Nonterminals Attributes Attributes

<binary numeral> Val —
<binary digits> Val Pos
<fraction digits> Val, Len —
<bit> Val Pos

We write our grammar in left recursive form, which means that the leftmost
binary digit in a sequence of digits is “at the bottom” of the parse tree, as
shown in Figure 3.7. For the binary digits to the left of the binary point, we
initialize the Pos attribute to zero and increment it by one as we go down the
tree structure. This technique provides the correct positional information for
the binary digits in the integer part, but a different approach is needed for
the fractional binary digits since the exponents from left to right are -1, -2,
-3, .... Notice that this exponent information can be derived from the length
of the binary sequence of digits from the binary point up to, and including,
the digit itself. Therefore we add a length attribute for fractional digits that is
transformed into a positional attribute for the individual bit. Notice that the
Val attribute at any point in the tree contains the absolute value for the
portion of the binary numeral in that subtree. Therefore the value of a parent
node is the sum of the values for the children nodes. These ideas are imple-
mented in the following attribute grammar:

<binary numeral> ::= <binary digits> . <fraction digits>

Val (<binary numeral>) ← Val (<binary digits>)+Val (<fraction digits>)

Pos (<binary digits>) ← 0

3.1  CONCEPTS AND EXAMPLES
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<binary digits> ::=

  <binary digits>2 <bit>

Val (<binary digits>) ← Val (<binary digits>2) + Val (<bit>)

Pos (<binary digits>2) ← Pos (<binary digits>) + 1

Pos (<bit>) ← Pos (<binary digits>)

| <bit>

Val (<binary digits>) ← Val (<bit>)

Pos (<bit>) ← Pos (<binary digits>)

<fraction digits> ::=

  <fraction digits>2 <bit>

Val (<fraction digits>) ← Val (<fraction digits>2) + Val (<bit>)

Len (<fraction digits>) ← Len (<fraction digits>2) + 1

Pos (<bit>) ← - Len (<fraction digits>)

| <bit>

Val (<fraction digits>) ← Val (<bit>)

Len (<fraction digits>) ← 1

Pos (<bit>) ← - 1

<bit> ::=

  0

Val (<bit>) ← 0

| 1

Val (<bit>) ← 2Pos (<bit>)

The parse tree in Figure 3.8 illustrates the use of positional attributes to
generate the semantics of the binary numeral 110.101 to be the real number
6.625.

The two attribute grammars for binary numerals do not involve conditions. If
we limit the size of binary numerals to match a particular machine architec-
ture, conditionals can be introduced to ensure that the binary numerals are
of proper size. Actually, this situation is fairly complex since real number
representations in most computers are based on scientific notation, not the
fractional notation that has been illustrated above. We examine this problem
of checking the size of binary numerals in the exercises.
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11

<bit>
Val :  2-3  = 0.125
Pos :  -3

    <binary numeral>
Val :   6  +  0.625 = 6.625

<binary digits>
Val :  6  
Pos :  0 

<fraction digits>
Val :  0.625  
Len :  3  

<fraction digits>
Val :  0.5  
Len :  2  

<fraction digits>
Val :  0.5  
Len :  1  

<binary digits>
Val :  6   
Pos :  1 

<binary digits>
Val :  4   
Pos :  2 

<bit>
Val :  0
Pos :  -2

<bit>
Val :  2-1  = 0.5
Pos :  -1

<bit>
Val :  0
Pos :  0

<bit>
Val :  21 = 2
Pos :  1

<bit>
Val :  22 = 4
Pos :  2

0

0

1

1

Figure 3.8: Binary Numeral Semantics Using Positional Attributes

Exercises

1. In old versions of Fortran that did not have the character data type,
character strings were expressed in the following format:

<string literal>  ::=  <numeral> H <string>

where the <numeral> is a base-ten integer (≥ 1), H is a keyword (named
after Herman Hollerith), and <string> is a sequence of characters. The
semantics of this string literal is correct if the numeric value of the base-
ten numeral matches the length of the string. Write an attribute gram-
mar using only synthesized attributes for the nonterminals in the defi-
nition of <string literal>.

2. Repeat exercise 1, using a synthesized attribute for <numeral> and an
inherited attribute for <string>.

3. Repeat exercise 1, using an inherited attribute for <numeral> and a
synthesized attribute for <string>.

3.1  CONCEPTS AND EXAMPLES
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4. The following BNF specification defines the language of Roman numer-
als less than 1000:

<roman> ::= <hundreds> <tens> <units>

<hundreds> ::= <low hundreds> | CD | D <low hundreds> | CM

<low hundreds> ::= ε | <low hundreds> C

<tens> ::= <low tens> | XL | L <low tens> | XC

<low tens> ::= ε | <low tens> X

<units> ::= <low units> | IV | V <low units> | IX

<low units> ::= ε | <low units> I

Define attributes for this grammar to carry out two tasks:

a) Restrict the number of X’s in <low tens>, the I’s in <low units>, and
the C’s in <low hundreds> to no more than three.

b) Provide an attribute for <roman> that gives the decimal value of the
Roman numeral being defined.

Define any other attributes needed for these tasks, but do not change
the BNF grammar.

5. Expand the binary numeral attribute grammar (either version) to allow
for binary numerals with no binary point (1101), binary fractions with
no fraction part (101.), and binary fractions with no whole number part
(.101).

6. Develop an attribute grammar for integers that allows a leading sign
character (+ or -) and that ensures that the value of the integer does
not exceed the capacity of the machine. Assume a two’s complement
representation; if the word-size is n bits, the values range from -2n-1

to 2n-1-1.

7. Develop an attribute grammar for binary numerals that represents signed
integers using two’s complement. Assume that a word-size attribute is
inherited by the two’s complement binary numeral. The meaning of the
binary numeral should be present at the root of the tree.

8. Assume that we have a 32-bit machine where real numbers are repre-
sented in scientific notation with a 24-bit mantissa and an 8-bit expo-
nent with 2 as the base. Both mantissa and exponent are two’s comple-
ment binary numerals. Using the results from exercise 7, write an at-
tribute grammar for <binary real number> where the meaning of the
binary numeral is at the root of the tree in base-10 notation—for ex-
ample, 0.5•25.
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9. Assuming that we allow the left side of a binary fraction to be left recur-
sive and the fractional part to be right recursive, simplify the positional
attribute grammar for binary fractions.

10. Consider a language of expressions with only the variables a, b, and c
and formed using the binary infix operators

+, –, * , /, and ↑ (for exponentiation)

where ↑ has the highest precedence, *  and / have the same next lower
precedence, and + and – have the lowest precedence. ↑ is to be right
associative and the other operations are to be left associative. Parenthe-
ses may be used to override these rules. Provide a BNF specification of
this language of expressions. Add attributes to your BNF specification
so that the following (unusual) conditions are satisfied by every valid
expression accepted by the attribute grammar:

a) The maximum depth of parenthesis nesting is three.

b) No valid expression has more than eight applications of operators.

c) If an expression has more divisions than multiplications, then sub-
tractions are forbidden.

11. A binary tree consists of a root containing a value that is an integer, a
(possibly empty) left subtree, and a (possibly empty) right subtree. Such
a binary tree can be represented by a triple (Left subtree, Root, Right
subtree). Let the symbol nil denote an empty tree. Examples of binary
trees include:

(nil,13,nil)
represents a tree with one node labeled with the value 13.

((nil,3,nil),8,nil)
represents a tree with 8 at the root, an empty right subtree, and a
nonempty left subtree with root labeled by 3 and empty subtrees.

The following BNF specification describes this representation of binary
trees.

<binary tree> ::= nil | ( <binary tree> <value> <binary tree> )

<value> ::= <digit> | <value> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Augment this grammar with attributes that carry out the following tasks:

a) A binary tree is balanced if the heights of the subtrees at each interior
node are within one of each other. Accept only balanced binary trees.

b) A binary search tree is a binary tree with the property that all the
values in the left subtree of any node N are less than the value at N,
and all the value in the right subtree of N are greater than or equal to
the value at node N. Accept only binary search trees.


