Análisis Sintáctico Ascendente CI4721 – Lenguajes de Programación II

Ernesto Hernández-Novich <emhn@usb.ve>

Universidad "Simón Bolívar"

Copyright ©2012-2016

Reconocedor ascendente determinístico

Sea $G=(N,\Sigma,P,S)$ una CFG cualquiera y $M=(Q,N\cup\Sigma,\delta_c,q_c,Q)$ su máquina característica determinística LR(k). Entonces el PDA extendido

$$LR_k(G) = (\{s_0, s_1, s_2\}, \Sigma, Q, \delta, s_0, \{s_2\})$$

con δ definida según

$$\begin{split} \delta(s_0,\lambda,\mathbf{u},\lambda) &= \{(s_1,q_c)\} \\ \delta(s_1,\mathbf{a},\mathbf{u},q) &= \{(s_1,q'q)\}, \\ \text{si } [A \to \alpha \cdot \mathbf{a}\beta,w] \in q \land \mathbf{u} \in \mathit{FIRST}_k(\mathbf{a}\beta w) \land \delta_c(q,\mathbf{a}) = q' \\ \delta(s_1,\lambda,\mathbf{u},q_0q_1\dots q_n) &= \{(s_1,q'q_n)\}, \\ \text{si } [A \to \alpha \cdot \mathbf{u}] \in q_0 \land |\alpha| = n \land A \neq S \land \delta_c(q_n,A) = q' \\ \delta(s_1,\lambda,\#^k,q_0q_1\dots q_n) &= \{(s_2,\lambda)\}, \\ \text{si } [S \to \alpha \cdot ,\#^k] \in q_0 \land |\alpha| = n \land q_n = q_c \end{split}$$

es un reconocedor ascendente y determinístico para G.

¿Cómo convertirlo en un programa?

Convirtiendo transiciones en datos

- En nuestro PDA determinístico con lookahead . . .
 - El estado inicial solamente se usa para empilar q_c .
 - El estado final solamente acepta ante el final de la entrada.
 - El estado intermedio solamente tiene transiciones a sí mismo
 - Avanza sobre prefijos viables, recordando su contexto en la pila (shift).
 - Alcanzado un item completo, retorna la pila al contexto previo (reduce).

¿Cómo convertirlo en un programa?

Convirtiendo transiciones en datos

- En nuestro PDA determinístico con lookahead . . .
 - El estado inicial solamente se usa para empilar q_c .
 - El estado final solamente acepta ante el final de la entrada.
 - El estado intermedio solamente tiene transiciones a sí mismo
 - Avanza sobre prefijos viables, recordando su contexto en la pila (shift).
 - Alcanzado un item completo, retorna la pila al contexto previo (reduce).
- Podemos diseñar un algoritmo muy compacto alrededor de
 - Una entrada con su marcador final $\#^k$.
 - Un buffer de tamaño k para el lookahead.
 - Una pila que comienza conteniendo q_c sobre un centinela #.
 - Una tabla cuyas entradas indiquen para cada combinación de lookahead y tope de pila.
 - El estado a empilar, si se trata de un shift.
 - La regla a utilizar, si se trata de un reduce, junto al contexto al cual regresar una vez limpia la pila.

El algoritmo es independiente de la gramática solamente necesita la tabla.

Reconocedor LR(k) por Tabla

Inicialización

input: $w \in \Sigma$ con $\#^k$ marcadores y las dos partes de la Tabla M asociada a la gramática:

- ACTION estado a empilar (shift) o regla a reducir (reduce).
- GOTO ¿cómo regresar al punto que ocasionó la última reducción?

```
{Empilar el centinela y el símbolo inicial} push(\#) push(q_c) {Preparar el k-lookahead} a \leftarrow loo primeros <math>k símbolos de k
```


Reconocedor LR(k) por Tabla

Procesamiento

```
while true do
     s \leftarrow \mathsf{top}()
     if ACTION[s, a] = shift t then
         push(t) y consumir siguiente de w al final de a
     else if ACTION[s, a] = reduce A \rightarrow \alpha then
         pop() tantas veces como |\alpha|
         t \leftarrow \mathsf{top}()
         push(GOTO[t, A])
         print A \rightarrow \alpha
     else if ACTION[s, a] = accept then
         break
     else
         error
     end if
  end while
output: Si w \in L(G), la derivación más derecha, sino error
```

El secreto está en la tabla

Características

- Una fila por cada $q \in Q$ de $M = (Q, N \cup \Sigma, \delta_c, q_c, Q)$
- ACTION[q, u] una columna por cada lookahead posible en cada posición se almacena
 - $shift t donde t \in Q$
 - reduce $A \rightarrow \alpha$
 - accept
 - Un indicador de error sintáctico.
- GOTO[q, A] tiene una columna por cada $N \{S\}$ en cada posición se almacena un $q \in Q$.

Los requerimientos de espacio son prohibitivos para k > 1

El método más simple (e inútil en la vida real).

1 Se enumeran las producciones comenzando por cero.

- **1** Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in \Sigma \cup \{\#\}$, $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$

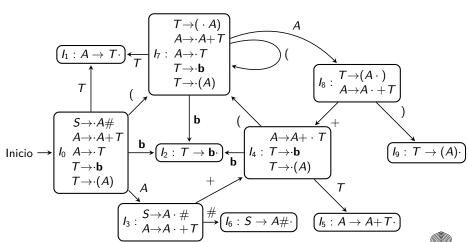
- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in \Sigma \cup \{\#\}$, $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$
- **6** Cuando $[S \to \alpha \cdot]$ ∈ I_i , entonces $ACTION[I_i, \#] = accept$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in \Sigma \cup \{\#\}$, $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$
- **6** Cuando $[S \to \alpha \cdot]$ ∈ I_i , entonces $ACTION[I_i, \#] = accept$.
- **6** Cuando $[A \to \alpha \cdot B\beta] \in I_i \land \delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.

El método más simple (e inútil en la vida real).

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in \Sigma \cup \{\#\}$, $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$
- **6** Cuando $[S \to \alpha \cdot] \in I_i$, entonces $ACTION[I_i, \#] = \mathbf{accept}$.
- **6** Cuando [A → $\alpha \cdot B\beta$] ∈ $I_i \land \delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.
- Testo de las entradas de ACTION corresponde a error.

Si la gramática es LR(0) todas las posiciones de ACTION tendrán exactamente **una** acción.



Paso 1 – Enumerar las producciones

- (0) $S \rightarrow A \#$
- (1) $A \rightarrow A + T$
- (2) $A \rightarrow T$
- (3) $T \rightarrow \mathbf{b}$
- (4) $T \rightarrow (A)$
- El símbolo inicial no es recursivo la producción agregada siempre es la número cero.
- Se acostumbra abreviar **reduce** por **r** seguida del número de la regla.

Paso 2 – Calcular la máquina de prefijos viables

Tablas ACTION y GOTO vacías

	b	+	()	#	Α	T
<i>I</i> ₀							
<i>I</i> ₁							
<i>I</i> ₂							
<i>I</i> ₃							
I_4							
<i>I</i> ₅							
<i>I</i> ₆							
<i>I</i> ₇							
<i>I</i> ₈							
<i>I</i> ₉							

Paso 3 - Determinar los shift

	b	+	()	#	A	Т
<i>I</i> ₀	s2		s7				
11							
$\frac{I_2}{I_3}$							
<i>I</i> ₃		s4			s6		
14	s2		s7				
<i>I</i> ₅							
<i>I</i> ₆							
17	s2		s7				
<i>I</i> ₈		s4		s9			
<i>I</i> ₉							

Paso 4 - Determinar los reduce

	b	+	()	#	A	T
<i>I</i> ₀	s2		s7				
I_1	r2	r2	r2	r2	r2		
I_2	r3	r3	r3	r3	r3		
<i>I</i> ₃		s4			s6		
14	s2		s7				
<i>I</i> ₅	r1	r1	r1	r1	r1		
16							
17	s2		s7				
<i>I</i> ₈		s4		s9			
<i>I</i> ₉	r4	r4	r4	r4	r4		

Paso 5 - Establecer el accept

	b	+	()	#	A	T
<i>I</i> ₀	s2		s7				
I_1	r2	r2	r2	r2	r2		
I_2	r3	r3	r3	r3	r3		
<i>I</i> ₃		s4			s6		
14	s2		s7				
<i>I</i> ₅	r1	r1	r1	r1	r1		
16					acc		
17	s2		s7				
<i>I</i> ₈		s4		s9			
<i>I</i> ₉	r4	r4	r4	r4	r4		

Paso 6 – Determinar los goto

	b	+	()	#	A	Т
<i>I</i> ₀	s2		s7			3	1
I_1	r2	r2	r2	r2	r2		
<i>I</i> ₂	r3	r3	r3	r3	r3		
<i>I</i> ₃		s4			s6		
14	s2		s7				5
<i>I</i> ₅	r1	r1	r1	r1	r1		
<i>I</i> ₆					acc		
17	s2		s7			8	1
<i>I</i> ₈		s4		s9			
<i>I</i> ₉	r4	r4	r4	r4	r4		

Tabla LR(0) terminada

	b	+	()	#	A	T
<i>I</i> ₀	s2		s7			3	1
I_1	r2	r2	r2	r2	r2		
I_2	r3	r3	r3	r3	r3		
<i>I</i> ₃		s4			s6		
14	s2		s7				5
<i>I</i> ₅	r1	r1	r1	r1	r1		
16					acc		
17	s2		s7			8	1
<i>I</i> ₈		s4		s9			
<i>I</i> ₉	r4	r4	r4	r4	r4		

No hay conflictos – La gramática es LR(0)

Uso inocente del lookahead

1 Se enumeran las producciones comenzando por cero.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in FOLLOW_1(A), ACTION[I_i, \mathbf{a}] = \mathbf{reduce}\ p$.

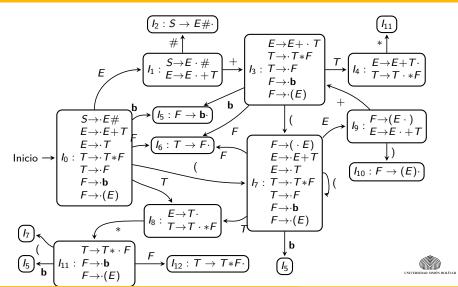
- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in FOLLOW_1(A), ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \to \alpha \cdot] \in I_i$, entonces $ACTION[I_i, \#] = accept$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in FOLLOW_1(A), ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \to \alpha \cdot] \in I_i$, entonces $ACTION[I_i, \#] = \mathbf{accept}$.
- **6** Cuando $[A \to \alpha \cdot B\beta] \in I_i \land \delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.

Uso inocente del lookahead

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(0).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \rightarrow \alpha \cdot]$ ∈ I_i con $A \rightarrow \alpha$ la p-ésima producción y $A \neq S$, entonces $\forall \mathbf{a} \in FOLLOW_1(A), ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \to \alpha \cdot] \in I_i$, entonces $ACTION[I_i, \#] = \mathbf{accept}$.
- **6** Cuando $[A \to \alpha \cdot B\beta] \in I_i \land \delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.
- Tel resto de las entradas de ACTION corresponde a error.

Si la gramática es *SLR*(1) todas las posiciones de *ACTION* tendrán exactamente **una** acción.


Paso 1 – Enumerar las producciones

- (0) $S \rightarrow E \#$
- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow \mathbf{b}$
- (6) $F \rightarrow (E)$

$$FOLLOW(S) = \{\#\}$$

 $FOLLOW(E) = \{\#, +, \}$
 $FOLLOW(T) = \{\#, +, \}$
 $FOLLOW(F) = \{\#, +, \}$

Paso 2 – Calcular la máquina de prefijos viables

Tablas ACTION y GOTO vacías

	b	+	*	()	#	E	Т	F
<i>I</i> ₀									
I_1									
<i>I</i> ₂									
<i>I</i> ₃									
<i>I</i> ₄									
<i>I</i> ₅									
<i>I</i> ₆									
<i>I</i> ₇									
<i>I</i> ₈									
<i>I</i> ₉									
110									
<i>I</i> ₁₁									
<i>I</i> ₁₂									

Paso 3 – Determinar los shift

	b	+	*	()	#	E	T	F
<i>I</i> ₀	s5			s7					
I_1		s3				s2			
<i>I</i> ₂									
<i>I</i> ₃	s5			s7					
I_4			s11						
<i>I</i> ₅									
<i>I</i> ₆									
<i>I</i> ₇	s5			s7					
<i>I</i> ₈			s11						
<i>l</i> ₉		s3			s10				
<i>I</i> ₁₀									
<i>I</i> ₁₁	s5			s7					
<i>I</i> ₁₂									

Paso 4 – Determinar los reduce

	b	+	*	()	#	E	T	F
<i>I</i> ₀	s5			s7					
I_1		s3				s2			
<i>I</i> ₂									
<i>I</i> ₃	s5			s7					
<i>I</i> ₄		r1	s11		r1	r1			
<i>I</i> ₅		r5	r5		r5	r5			
<i>I</i> ₆		r4	r4		r4	r4			
<i>I</i> ₇	s5			s7					
<i>I</i> ₈		r2	s11		r2	r2			
I_9		s3			s10				
<i>I</i> ₁₀		r6	r6		r6	r6			
<i>I</i> ₁₁	s5			s7					
<i>I</i> ₁₂		r4	r4		r4	r4			

Paso 5 - Establecer el accept

	b	+	*	()	#	E	T	F
<i>I</i> ₀	s5			s7					
I_1		s3				s2			
<i>I</i> ₂						acc			
<i>I</i> ₃	s5			s7					
<i>I</i> ₄		r1	s11		r1	r1			
<i>I</i> ₅		r5	r5		r5	r5			
<i>I</i> ₆		r4	r4		r4	r4			
<i>I</i> ₇	s5			s7					
<i>I</i> ₈		r2	s11		r2	r2			
<i>l</i> ₉		s3			s10				
<i>I</i> ₁₀		r6	r6		r6	r6			
<i>I</i> ₁₁	s5			s7					
<i>I</i> ₁₂		r4	r4		r4	r4			

Paso 6 – Determinar los goto

	b	+	*	()	#	E	Т	F
<i>I</i> ₀	s5			s7			1	8	6
I_1		s3				s2			
<i>I</i> ₂						acc			
<i>I</i> ₃	s5			s7				4	6
<i>I</i> ₄		r1	s11		r1	r1			
<i>I</i> ₅		r5	r5		r5	r5			
<i>I</i> ₆		r4	r4		r4	r4			
<i>I</i> ₇	s5			s7			9	8	6
<i>I</i> ₈		r2	s11		r2	r2			
<i>I</i> ₉		s3			s10				
<i>I</i> ₁₀		r6	r6		r6	r6			
<i>I</i> ₁₁	s5			s7					12
<i>I</i> ₁₂		r4	r4		r4	r4			

Expresiones aditivas y multiplicativas

Tabla SLR(1) terminada

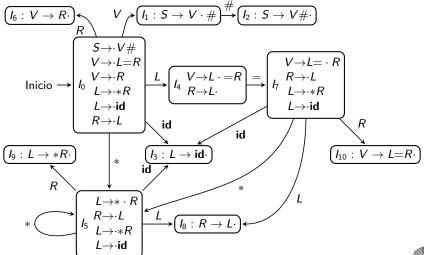
	b	+	*	()	#	E	Т	F
<i>I</i> ₀	s5			s7			1	8	6
I_1		s3				s2			
<i>I</i> ₂						acc			
<i>I</i> ₃	s5			s7				4	6
<i>I</i> ₄		r1	s11		r1	r1			
<i>I</i> ₅		r5	r5		r5	r5			
<i>I</i> ₆		r4	r4		r4	r4			
<i>I</i> ₇	s5			s7			9	8	6
<i>I</i> ₈		r2	s11		r2	r2			
<i>I</i> ₉		s3			s10				
<i>I</i> ₁₀		r6	r6		r6	r6			
111	s5			s7					12
<i>I</i> ₁₂		r4	r4		r4	r4			

Paso 1 – Enumerar las producciones

(0)
$$S \rightarrow V \#$$

(1)
$$V \rightarrow L = R$$

(2)
$$V \rightarrow R$$


(3)
$$L \rightarrow *R$$

(4)
$$L \rightarrow id$$

(4)
$$R \rightarrow L$$

$$FOLLOW(S) = FOLLOW(V) = \{\#\}$$

 $FOLLOW(R) = FOLLOW(L) = \{\#, =\}$

Tablas ACTION y GOTO vacías

	id	=	*	#	V	L	R
I_0							
I_1							
<i>I</i> ₂							
<i>I</i> ₃							
<i>I</i> ₄							
<i>I</i> ₅							
<i>I</i> ₆							
<i>I</i> ₇							
<i>I</i> ₈							
<i>I</i> ₉		·					
<i>I</i> ₁₀							

Paso 3 – Determinar los *shift*

	id	=	*	#	V	L	R
<i>I</i> ₀	s3		s5				
I_1				s2			
<i>I</i> ₂							
<i>I</i> ₃							
14		s7					
<i>I</i> ₅	s3		s1				
16							
17	s3		s5				
<i>I</i> ₈							
<i>I</i> ₉							
<i>I</i> ₁₀							

Paso 4 – Determinar los reduce

	id	=	*	#	V	L	R
<i>I</i> ₀	s3		s5				
I_1				s2			
I_2							
<i>I</i> ₃	r4	r4	r4	r4			
<i>I</i> ₄	r5	s7 /r5	r5	r5			
<i>I</i> ₅	s3		s1				
<i>I</i> ₆	r2	r2	r2	r2			
<i>I</i> ₇	s3		s5				
<i>I</i> ₈	r5	r5	r5	r5			
<i>l</i> ₉	r3	r3	r3	r3			
<i>I</i> ₁₀	r1	r1	r1	r1			

Paso 5 - Establecer el accept

	id	=	*	#	V	L	R
<i>I</i> ₀	s3		s5				
I_1				s2			
I_2				acc			
<i>I</i> ₃	r4	r4	r4	r4			
14	r5	s7 /r5	r5	r5			
<i>I</i> ₅	s3		s1				
16	r2	r2	r2	r2			
17	s3		s5				
<i>I</i> ₈	r5	r5	r5	r5			
<i>I</i> ₉	r3	r3	r3	r3			
<i>I</i> ₁₀	r1	r1	r1	r1			

Paso 6 – Determinar los goto

	id	=	*	#	V	L	R
I_0	s3		s5		1	4	6
I_1				s2			
I_2				acc			
<i>I</i> ₃	r4	r4	r4	r4			
14	r5	s7 /r5	r5	r5			
<i>I</i> ₅	s3		s1			8	9
<i>I</i> ₆	r2	r2	r2	r2			
<i>I</i> ₇	s3		s5			8	10
<i>I</i> ₈	r5	r5	r5	r5			
<i>I</i> ₉	r3	r3	r3	r3			
<i>I</i> ₁₀	r1	r1	r1	r1			

Tabla LR(0) terminada

	id		*	#	V	L	R
I_0	s3		s5		1	4	6
I_1				s2			
<i>I</i> ₂				acc			
<i>I</i> ₃	r4	r4	r4	r4			
<i>I</i> ₄	r5	s7 /r5	r5	r5			
<i>I</i> ₅	s3		s1			8	9
<i>I</i> ₆	r2	r2	r2	r2			
<i>I</i> ₇	s3		s5			8	10
<i>I</i> ₈	r5	r5	r5	r5			
l 9	r3	r3	r3	r3			
<i>I</i> ₁₀	r1	r1	r1	r1			

No es LR(0)

Tabla SLR(1) terminada

	id	=	*	#	V	L	R
<i>I</i> ₀	s3		s5		1	4	6
I_1				s2			
<i>I</i> ₂				acc			
<i>I</i> ₃		r4		r4			
<i>I</i> ₄		s7 /r5		r5			
<i>I</i> ₅	s3		s1			8	9
<i>I</i> ₆				r2			
<i>I</i> ₇	s3		s5			8	10
<i>I</i> ₈		r5		r5			
l 9		r3		r3			
<i>I</i> ₁₀		r1		r1			

No es LR(0) ni SLR(1) – el FOLLOW no es suficiente.

El método más general – lookahead selectivo

1 Se enumeran las producciones comenzando por cero.

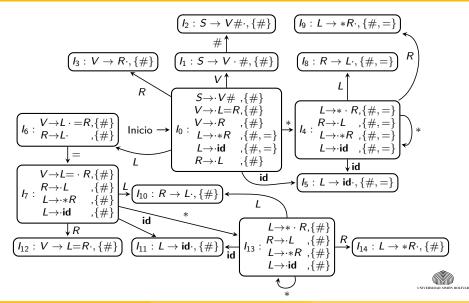
- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(1).

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(1).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta, x] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(1).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta, x] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \to \alpha \cdot, \mathbf{a}] \in I_i$ con $A \to \alpha$ la p−ésima producción y $A \neq S$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.

- 1 Se enumeran las producciones comenzando por cero.
- **2** Se construye la máquina característica determinística LR(1).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta, x] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \to \alpha \cdot, \mathbf{a}] \in I_i$ con $A \to \alpha$ la p-ésima producción y $A \neq S$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \to \alpha \cdot, \#] \in I_i$, entonces $ACTION[I_i, \#] = accept$.

- 1 Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(1).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta, x] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \to \alpha \cdot, \mathbf{a}] \in I_i$ con $A \to \alpha$ la p-ésima producción y $A \neq S$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \rightarrow \alpha \cdot, \#]$ ∈ I_i , entonces $ACTION[I_i, \#] = accept$.
- **6** Cuando [A → α · $B\beta$, x] ∈ I_i ∧ $\delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.



El método más general – lookahead selectivo

- Se enumeran las producciones comenzando por cero.
- 2 Se construye la máquina característica determinística LR(1).
- **3** Cuando $[A \to \alpha \cdot \mathbf{a}\beta, x] \in I_i \land \delta(I_i, \mathbf{a}) = I_j$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{shift} \ j$.
- **4** Cuando $[A \to \alpha \cdot, \mathbf{a}] \in I_i$ con $A \to \alpha$ la p-ésima producción y $A \neq S$, entonces $ACTION[I_i, \mathbf{a}] = \mathbf{reduce} \ p$.
- **6** Cuando $[S \rightarrow \alpha \cdot, \#]$ ∈ I_i , entonces $ACTION[I_i, \#] = accept$.
- **6** Cuando [A → α · $B\beta$, x] ∈ I_i ∧ $\delta(I_i, B) = I_j$, entonces $GOTO[I_i, B] = I_j$.
- TEI resto de las entradas de ACTION corresponde a error.

Si la gramática es LR(1) todas las posiciones de ACTION tendrán exactamente **una** acción.

Tablas ACTION y GOTO vacías

	id	=	*	#	V	L	R
I ₀							
I_1							
I ₂							
<i>I</i> ₃							
I ₄							
I ₅							
I ₆							
I ₇							
I ₈							
I ₉							
I ₁₀							
111							
<i>I</i> ₁₂							
<i>I</i> ₁₃							
<i>I</i> ₁₄							

Paso 3 – Determinar los shift

	id	=	*	#	V	L	R
I ₀	s5		s4				
<i>I</i> ₁				s2			
I_2							
<i>I</i> ₃							
I_4	s5		s4				
<i>I</i> ₅							
I 6		s7					
I_7	s11		s13				
I 8							
I 9							
I ₁₀							
<i>I</i> ₁₁							
<i>I</i> ₁₂							
<i>I</i> ₁₃	s11		s13				
I ₁₄							

Paso 4 - Determinar los reduce

	id	=	*	#	V	L	R
I ₀	s5		s4				
I_1				s2			
I_2							
<i>I</i> ₃				r2			
I_4	s5		s4				
I_5		r4		r4			
<i>I</i> ₆		s7		r5			
<i>I</i> ₇	s11		s13				
I 8		r5		r5			
I 9		r3		r3			
I ₁₀				r5			
<i>I</i> ₁₁				r4			
<i>I</i> ₁₂				r1			
<i>I</i> ₁₃	s11		s13				
<i>I</i> ₁₄				r3			

Paso 5 – Establecer el accept

	id	=	*	#	V	L	R
I ₀	s5		s4				
I_1				s2			
I ₂				acc			
I ₃				r2			
I ₄	s5		s4				
I ₅		r4		r4			
I ₆		s7		r5			
I ₇	s11		s13				
I ₈		r5		r5			
I ₉		r3		r3			
I ₁₀				r5			
I ₁₁				r4			
<i>I</i> ₁₂				r1			
<i>I</i> ₁₃	s11		s13				
<i>I</i> ₁₄				r3			

Paso 6 – Determinar los goto

	id	=	*	#	V	L	R
I ₀	s5		s4		1	6	3
I_1				s2			
I_2				acc			
I ₃				r2			
<i>I</i> ₄	s5		s4			8	9
I ₅		r4		r4			
I ₆		s7		r5			
I ₇	s11		s13			10	12
I ₈		r5		r5			
I 9		r3		r3			
<i>I</i> ₁₀				r5			
111				r4			
<i>I</i> ₁₂				r1			
<i>I</i> ₁₃	s11		s13			10	14
<i>I</i> ₁₄				r3			

Tabla Canónica LR(1) terminada

	id	=	*	#	V	L	R
I ₀	s5		s4		1	6	3
I_1				s2			
I_2				acc			
<i>I</i> ₃				r2			
14	s5		s4			8	9
<i>I</i> ₅		r4		r4			
I 6		s7		r5			
<i>I</i> ₇	s11		s13			10	12
I ₈		r5		r5			
I 9		r3		r3			
/ 10				r5			
<i>I</i> ₁₁				r4			
<i>I</i> ₁₂				r1			
<i>I</i> ₁₃	s11		s13			10	14
<i>I</i> ₁₄				r3			

Recuperación de Errores

... porque el mundo no es perfecto

- Un reconocedor ascendente detecta errores al consultar ACTION.
 - Canónico LR(1) jamás hace reducciones antes de reportar el error.
 - SLR(1) (y el LALR(1) que no hemos estudiado) podrían hacer reducciones antes de reportar el error.
 - Ninguno ejecutará shift de un símbolo erróneo.
- Abortar el reconocimiento es inaceptable
 - El programa "está mal" el proceso de síntesis no ocurrirá, pero el análisis debería continuar tanto como se pueda.
 - Cada error debe ser amplio y detallado
 - Ubicación línea y columna, contexto de ser posible.
 - Condición "esperaba X pero recibí Y"
 - Encontrar otros defectos ayudará al programador.
- Existen dos técnicas de recuperación aplicables

Recuperación de Errores

... porque el mundo no es perfecto

- Un reconocedor ascendente detecta errores al consultar ACTION.
 - Canónico LR(1) jamás hace reducciones antes de reportar el error.
 - SLR(1) (y el LALR(1) que no hemos estudiado) podrían hacer reducciones antes de reportar el error.
 - Ninguno ejecutará shift de un símbolo erróneo.
- Abortar el reconocimiento es inaceptable
 - El programa "está mal" el proceso de síntesis no ocurrirá, pero el análisis debería continuar tanto como se pueda.
 - Cada error debe ser amplio y detallado
 - Ubicación línea y columna, contexto de ser posible.
 - Condición "esperaba X pero recibí Y"
 - Encontrar otros defectos ayudará al programador.
- Existen dos técnicas de recuperación aplicables
 - Técnica del Pánico (Panic Mode).
 - Técnica del Engaño (Phrase Level Recovery).

Técnica del Pánico

Panic Mode, a.k.a. Discard all the tokens!

- Desempilar hasta encontrar la con GOTO hacia algún no terminal A particular – retroceder en el prefijo que no se pudo completar.
- Descartar tokens hasta encontrar alguno que esté en FOLLOW(A).
- Empila GOTO(s, A) y continuar simula una reducción exitosa.
- Usualmente A corresponde a un elemento sintáctico complejo instrucción, expresión, bloque, . . .
 - Si A corresponde a instrucción, entonces el token podría ser ;.
 - La posición en la tabla apunta a conjuntos de sincronización tuplas de no terminal y terminal asociado.

Técnica del Engaño

(Phrase Level Recovery, a.k.a. Let me type for you)

- La posición de la tabla apunta a una subrutina de manejo del error.
- Cada rutina es específica para la recuperación particular altamente dependiente del lenguaje.
- Las rutinas "completan" lo que falta para continuar
 - Agregan, quitan o cambian símbolos en la entrada.
 - Agregan o sacan cosas de la pila Muy peligroso.
 - Anuncian lo que hicieron para "corregir" el problema.
- Solamente aplicable a lenguajes (o sub-lenguajes) tales que
 - Se conocen los errores más frecuentes.
 - Es fácil alcanzar formas sentenciales válidas con edición mínima.

Técnica del Engaño

(Phrase Level Recovery, a.k.a. Let me type for you)

- La posición de la tabla apunta a una subrutina de manejo del error.
- Cada rutina es específica para la recuperación particular altamente dependiente del lenguaje.
- Las rutinas "completan" lo que falta para continuar
 - Agregan, quitan o cambian símbolos en la entrada.
 - Agregan o sacan cosas de la pila Muy peligroso.
 - Anuncian lo que hicieron para "corregir" el problema.
- Solamente aplicable a lenguajes (o sub-lenguajes) tales que
 - Se conocen los errores más frecuentes.
 - Es fácil alcanzar formas sentenciales válidas con edición mínima.

No la llame ad hoc, llámela ad hack.

• El método LR(0) es demasiado limitado.

- El método LR(0) es demasiado limitado.
- El método SLR(1) es suficiente para gramáticas simples
 - Se basa en las limitaciones del *LR*(0).
 - Hace una aproximación "gruesa" usando FOLLOW₁.
 - Las gramáticas SLR(1) no son ambiguas, pero hay gramáticas no ambiguas que no son SLR(1)

- El método LR(0) es demasiado limitado.
- El método SLR(1) es suficiente para gramáticas simples
 - Se basa en las limitaciones del LR(0).
 - Hace una aproximación "gruesa" usando FOLLOW₁.
 - Las gramáticas SLR(1) no son ambiguas, pero hay gramáticas no ambiguas que no son SLR(1)
- El método *LR*(1) es el más general.
 - Toda gramática *LR*(0) o *SLR*(1) también es *LR*(1).
 - La cantidad de estados aumenta notablemente en nuestro ejemplo aumentó en un 37 % de SLR(1) a LR(1).
 - Tabla *GOTO* es brutalmente esparcida en nuestro ejemplo hay 80 % **vacío**.

- El método LR(0) es demasiado limitado.
- El método *SLR*(1) es suficiente para gramáticas simples
 - Se basa en las limitaciones del *LR*(0).
 - Hace una aproximación "gruesa" usando FOLLOW₁.
 - Las gramáticas SLR(1) no son ambiguas, pero hay gramáticas no ambiguas que no son SLR(1)
- El método LR(1) es el más general.
 - Toda gramática *LR*(0) o *SLR*(1) también es *LR*(1).
 - La cantidad de estados aumenta notablemente en nuestro ejemplo aumentó en un 37 % de SLR(1) a LR(1).
 - Tabla GOTO es brutalmente esparcida en nuestro ejemplo hay 80 % vacío.

One does not simply build an LR(1) parser manually.

Bibliografía

- [Aho]
 - Secciones 4.6 y 4.7
 - Ejercicios 4.6.1 a 4.6.9
- Procese la gramática inicial de mini JSON
 - Construya las tablas LR(0), SLR(1) y LR(1).
 - Compare sus tamaños y manejo de conflictos.

